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aDepartamento de Quı́mica Orgánica, ICMA, Universidad de Zaragoza-CSIC, E-50009 Zaragoza, Spain
bLaboratoire CIMMA, CNRS UMR 6200. 2, Bd. Lavoisier, 49045 Angers Cedex, France

Received 9 July 2004; accepted 3 September 2004

Available online 21 September 2004
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Abstract—The phosphoramidate-like reaction of 1,3-dithiole derived N-(diethoxyphosphinyl)hydrazones with formyl derivatives of
1,3-dithiole affords the longest aza-analogues of extended tetrathiafulvalenes with a polyenic spacer reported to date. Their struc-
tural and electrochemical properties are discussed.
� 2004 Elsevier Ltd. All rights reserved.
Extended tetrathiafulvalenes have attracted much atten-
tion due to their low oxidation potentials when com-
pared to simple tetrathiafulvalene (TTF) derivatives; in
fact, the larger extension of the p-framework in the for-
mer allows not only the easy generation of the cation
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radical state, but also that of di- and higher polycationic
states, due to the decreased on site Coulomb repulsions.
To that end, a wealth of p-spacers, like polyenes, aro-
matic and heteroaromatic moieties have been used to
connect the two dithiolylidene fragments.1–4 On the
other hand, the incorporation of nitrogen atoms instead
of carbon atoms in the conjugated spacer has much less
precedent in the literature. Thus, only two examples of
symmetrical azine derivatives of general structure 1 have
been reported to date,5,6 along with a few 1,3-dithiol-2-
ylidenehydrazino derivatives.5,7–10
0040-4039/$ - see front matter � 2004 Elsevier Ltd. All rights reserved.
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In this letter we describe the synthesis, characterization
and electrochemical properties of the first aza-analogues
of extended TTFs incorporating a polyenic chain of four
or six conjugated atoms between the dithiole rings (2
and 3, respectively).
These compounds are unsymmetrical azines and can,
therefore, show a tendency to disproportionate, so that
a possible route to the target compounds making use
of the reaction of dithiolium cations with hydrazine
hydrate and further reaction of the resulting hydrazones
with carbonyl compounds was ruled out. Among the
different published procedures for the synthesis of
unsymmetrical azines, the use ofN-(diethoxyphosphinyl)-
hydrazones looked promising,11,12 provided that the
necessary starting compounds 5 could be prepared. This
turned out to be the case, and the reaction of diethyl
phosphorohydrazidate13 with dithiolium cations 4 under
similar conditions to those previously reported by our
group10 afforded the first diethoxyphosphinylhydr-
azones in dithiole series (5)14 (Scheme 1).

The reaction of 5a with aldehydes 615 did not proceed at
room temperature, a fact, which can be ascribed to the
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low electrophilicity of the carbonyl group of 6, but led to
azines 2 in refluxing toluene.16 In a similar vein, azines
317 were obtained from 5 and aldehyde 7.18

1H NMR spectroscopy shows that azines 2 adopt an s-
cis conformation (Fig. 1), as revealed by the value of
the coupling constants (Jab = 5.6Hz for 2a and 5.7Hz
for 2b), which are very close to the one reported
(4.9Hz) for a related cyanoimino derivative whose struc-
ture has been determined by X-ray diffraction
studies.19,20

The stabilizing 1,5 S–N interaction is responsible for this
conformational preference.10,19 Moreover, a long-range
coupling between Ha and Hc (Jac = 1.5Hz) is observed,
but not between Ha and Hd. This is in agreement with
previous reports on some 6-substituted 1,4-
dithiafulvenes.21,22

These features are also present in the 1H NMR spectrum
(CDCl3) of 6a, which in our hands, is different from that
previously described.15 Thus, the formyl group adopts
an s-cis conformation (Jmn = 1.9Hz), but there exists a
coupling between the more distant hydrogen atoms of
S
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Figure 1. Preferred conformations of 2a and 6a as determined by 1H

NMR.
the dithiafulvene moiety (Jnp = 1.5Hz, Jnq = 0Hz), and
the two ring protons (Hp and Hq) are not equivalent.23

On the other hand, J values for azines 3 indicate an all-
anti-trans conformation, like that found for aldehyde
7.18

The electrochemical properties of new extended TTFs 2
and 3 were studied by cyclic voltammetry and relevant
data are collected in Table 1. For the sake of compari-
son, the oxidation potentials of the azino derivatives 1
(R = Me) and the all-carbon analogues 815 and 919 are
also shown.
In positive direction, the electrochemical behaviour of
compounds 2 and 3 exhibits a two-electron quasi revers-
ible process at 10V/s. At low scan rate (0.1V/s), the
process becomes irreversible, pointing to an EEC mech-
anism (Fig. 2).
Table 1. Oxidation potentials of donorsa

Compound 1 (R: Me) 2a 2b 3a 3b 8 9

Epa 0.87b 0.69 0.63 0.59 0.56 0.18c 0.14d

aE in V versus SCE, Pt working electrode, TBAPF6 0.4M in MeCN,

scan rate 10V/s.
b From Ref. 6 (in CH2Cl2, scan rate 0.1V/s).
c Recalculated from Ref. 15 (in MeCN, scan rate 0.043V/s).
d E1=2

1 value recalculated from Ref. 19 (in MeCN, scan rate 0.1V/s).



Figure 2. Normalized cyclic voltammograms of 2b at different scan

rates.
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It is noteworthy that this behaviour is completely differ-
ent to that of the shorter derivative 1 (R = Me), which
displays two reversible monoelectronic oxidation
waves.6

As expected, the replacement of hydrogen atoms by
methyl groups (cf. series a and b) and the lengthening
of the p-spacer (cf. 1 (R = Me), 2 and 3) give rise to a
decrease in the oxidation potentials. Moreover, the
replacement of CH groups of the spacer by nitrogen
atoms results in higher oxidation potentials (cf. 2a and
8, and 3b and 9), in agreement with previous reports.24

Nevertheless, compounds 2 and 3, like 8 and 9, are oxi-
dized directly to their corresponding dications, which
indicates that the introduction of an azino spacer in 2
and 3 does not increase the stability of the cation radical
species to a noticeable extent, in sharp contrast to the
behaviour observed in related diselenadiazafulvalenes.25

To sum up, the newly prepared N-(diethoxyphosphinyl)-
hydrazones 5 allow an easy access to long, unsymmetri-
cal aza-analogues of extended TTFs 2 and 3. Azines 2
show an s-cis conformation whereas compounds 3 dis-
play an all-anti-trans geometry. Unlike azine 1
(R = Me), which is oxidized stepwise to its cation radical
and dication states, compounds 2 and 3 are directly oxi-
dized to the corresponding dications.
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